
Learning and Exploiting Shaped Reward Models for Large Scale Multiagent RL

Arambam James Singh, Akshat Kumar, Hoong Chuin Lau
School of Computing and Information Systems

Singapore Management University
{arambamjs.2016,akshatkumar,hclau}@smu.edu.sg

Abstract
Many real world systems involve interaction among large
number of agents to achieve a common goal, for example, air
traffic control. Several model-free RL algorithms have been
proposed for such settings. A key limitation is that the empir-
ical reward signal in model-free case is not very effective in
addressing the multiagent credit assignment problem, which
determines an agent’s contribution to the team’s success. This
results in lower solution quality and high sample complexity.
To address this, we contribute (a) an approach to learn a dif-
ferentiable reward model for both continuous and discrete ac-
tion setting by exploiting the collective nature of interactions
among agents, a feature commonly present in large scale mul-
tiagent applications; (b) a shaped reward model analytically
derived from the learned reward model to address the key
challenge of credit assignment; (c) a model-based multiagent
RL approach that integrates shaped rewards into well known
RL algorithms such as policy gradient, soft-actor critic. Com-
pared to previous methods, our learned reward models are
more accurate, and our approaches achieve better solution
quality on synthetic and real world instances of air traffic con-
trol, and cooperative navigation with large agent population.

1 Introduction
In many real world applications, large group of agents in-
teract with each other to achieve a common goal. For ex-
ample, aircraft coordination in busy air space is required to
ensure certain minimum separation among aircrafts (Brit-
tain and Wei 2019), in maritime traffic management (Singh
et al. 2019; Singh, Kumar, and Lau 2020) where the goal is
to reduce congestion for navigation safety, and vehicle fleet
optimization problems (Varakantham, Adulyasak, and Jail-
let 2014). Such problems can be modeled using cooperative
multiagent reinforcement learning (MARL). There are many
recent successes of single agent RL methods (Mnih et al.
2015; Silver et al. 2017). However, direct extensions of sin-
gle agent approaches to multiagent setting is challenging due
to reasons such as multiple agents learning and acting simul-
taneously, and scalability with increasing number of agents
resulting in exponential joint state and action spaces. As a
result, several recent MARL approaches such as multiagent
actor-critic (Lowe et al. 2017), counterfactual policy gra-
dient (Foerster et al. 2018), multiagent Q-learning (Rashid
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et al. 2018), and actor-attention critic (Iqbal and Sha 2019)
are limited to relatively small number of agents.

Specific to cooperative multiagent system with shared re-
wards is the critical problem of multiagent credit assign-
ment (Agogino and Tumer 2004; Bagnell and Ng 2006).
Given the complex nature of interactions among agents,
the individual contribution of each agent (and its specific
actions) to the team reward is unclear. This makes mul-
tiagent learning much more challenging and sample inef-
ficient, specially for policy gradient techniques (Williams
1992; Peshkin et al. 2000) as the reward signal used to train
agent policies has high noise due to other agents’ actions.
Shaped rewards: Shaped rewards have been proposed to
address the problem of multiagent credit assignment. Dif-
ference rewards (DRs), computed as the difference between
the system reward and a counterfactual reward when the par-
ticular agent’s impact is removed from the system, quantify
the contribution of an agent to the system reward (Agogino
and Tumer 2008; Colby et al. 2016). However, computing
DRs is challenging as it requires access to the actual reward
model (not available in a model free setting), or perform ad-
ditional simulations, which is computationally challenging.
To address this, previous approaches have used function ap-
proximation to learn the reward model (and DRs) from em-
pirical returns (Proper and Tumer 2013; Colby et al. 2016).
Their key limitations include being specialized to a particu-
lar domain and may not be extensible to general multiagent
settings (Proper and Tumer 2012, 2013), and based only on
agents’ local observations (Colby et al. 2016), which makes
the learned reward model inaccurate for large agent popula-
tion and when agents are tightly-coupled.
Collective multiagent systems: Many multiagent applica-
tions have additional structure that can be exploited for ac-
curate learning of reward models. In several large scale mul-
tiagent systems, an agent’s behavior is mainly influenced by
the aggregate information about neighboring agents rather
than their identities (Sonu, Chen, and Doshi 2015; Robbel
et al. 2016; Subramanian et al. 2020). For example, in taxi
fleet optimization, the movement behavior of a taxi agent is
primarily influenced by the total demand and the count of
other taxis present in city zones (Varakantham, Adulyasak,
and Jaillet 2014; Nguyen, Kumar, and Lau 2017a). In air
and maritime traffic control, most of the agents can be con-
sidered as homogeneous (or belonging to a small number



of types) (Brittain and Wei 2019; Singh, Kumar, and Lau
2020). Previous reward model learning approaches do not
specifically exploit such symmetries, which our work aims
to do.

Specialized MARL approaches have been developed for
such collective settings such as mean field RL (Yang et al.
2018; Subramanian et al. 2020). Mean-field RL (Subrama-
nian et al. 2020) scales well for large agent setting, but does
not explicitly addresses credit assignment or learns reward
models. (Hüttenrauch, Šošić, and Neumann 2018) is another
approach for large agent settings where they learn agent ob-
servation embeddings, whereas our focus is on the com-
plementary aspect of learning DRs for credit assignment.
(Sun, Shen, and How 2020) propose an attention mecha-
nism to learn a communication graph, which is a different
settings than ours. Collective decentralized POMDPs (Dec-
POMDPs) have also been proposed for decision making in
homogeneous agent population (Nguyen, Kumar, and Lau
2017b, 2018), and applied in applications such as vehicle
fleet optimization and multiagent patrolling. Their solution
methods do not specifically learn reward models, but per-
form credit assignment at the level of action-value function
(or Q-values), and the action-value function itself is learned
from empirical returns. A key bottleneck in such methods is
that credit assignment at the level of entire future expected
reward-to-go is often more difficult than learning the one
step (shaped) reward model. Such methods are not applica-
ble to continuous action setting which we also target. Em-
pirically, our approach worked better than such previous ap-
proaches for mean field RL and collective Dec-POMDPs.

Our key contributions include:

– An approach to learn a differentiable reward model for
both continuous and discrete action setting by exploiting
the collective nature of interactions among agents. Un-
like previous reward learning methods, our approach is
general, utilizes aggregate information over all the agents,
and thus has better accuracy.

– A principled method to analytically compute shaped re-
wards from the reward model, without requiring any do-
main expertise or extra simulations. Resulting approach is
scalable for large number of agents, and makes effective
multiagent credit assignment possible.

– A model-based RL approach that uses learned shaped re-
wards instead of empirical returns, and generalizes well
known RL algorithms for discrete and continuous actions
such as policy gradient and soft-actor critic (Haarnoja
et al. 2018) to the collective multiagent setting.

We also highlight that reward models can be learned simulta-
neously with the policy learning. We evaluate our approach
on two domains—air traffic control (Brittain and Wei 2019),
and cooperative navigation in a multiagent particle environ-
ment (Iqbal and Sha 2019). For the air traffic domain, in
addition to synthetic instances, we obtain historical air traf-
fic data over the European airspace containing ∼100 mil-
lion data points showing the trajectory and other navigation
properties (e.g., altitude, speed) over 30 days. We use the re-
alistic BlueSky Air Traffic Control Simulator as our RL sim-
ulator (Hoekstra and Ellerbroek 2016). We compare against

approaches that are specifically designed to exploit homoge-
neous agent population (Yang et al. 2018; Subramanian et al.
2020; Nguyen, Kumar, and Lau 2018), and specialized ap-
proaches for air traffic control (Brittain and Wei 2019), and
cooperative navigation (Iqbal and Sha 2019). We show that
our approach outperforms such previous methods.

2 Model Definition
We describe a cooperative multiagent system formally as
a Dec-POMDP (Oliehoek, Amato et al. 2016), G =
〈S,A, P,O, Z,M, γ, r〉. There are M agents in the system.
At each time step, an agentm can be in any of the state s ∈ S
and takes action a ∈ A. The joint state and action spaces are
denoted as S = ×Mm=1S and A = ×Mm=1A respectively.
The reward function r(s,a) : S ×A→ R is shared among
agents (i.e., given to the agent team), and transition of en-
vironment from current state s to next state s′ after taking
the joint-action a is according to state transition function
P (s′|s,a) : S ×A× S → [0, 1].

We consider a partially observable setting in which each
agent m draws individual observation z ∈ Z according to
observation function O(z, s′,a) = Pr(z|a, s′) if the last
action taken was a and the resulting joint-state was s′.
Each agent gets action am through a parameterized pol-
icy πm(am | τm; θm) which is a mapping from an action-
observation history τm ∈ (Z × A)∗ to action am. For
infinite-horizon problems, history τm can become very long,
therefore, often a compact summary of τm is used (e.g., re-
member last k observations), or finite-state controllers are
used which can compactly summarize an agent’s obser-
vaiton history, and their structure can also be learned using
gradient based methods (Peshkin et al. 2000).

We use γ to denote the reward discounting. Let Rt =∑∞
i=0 γ

iri+t be the discounted return. Using this, the joint
value function V and action-value function Q are given as:

V (st) = Est+1:∞,at+1:∞[Rt | st] (1)
Q(st,at) = Est+1:∞,at+1:∞[Rt | st,at] (2)

The objective is to find the joint-policy π that maximizes
expected discounted return:

J(π) = Es0:∞,a0:∞

[ ∞∑
t=0

γtr(st,at)
∣∣ π] (3)

Learning paradigm: In MARL, the environment receives
a joint action at and transitions to a next state st+1, and
each agent receives a reward rt and an observation zmt+1.
We follow previous MARL approach of centralized learning
and decentralized execution (Oliehoek, Spaan, and Vlassis
2008; Foerster et al. 2018) in which training is done cen-
trally. That is, during learning, we assume access to extra
information such as the joint-state of agents, which helps in
accurate computation of different value functions and stabi-
lize the learning. However, during the execution phase, each
agent independently executes the policy based only on its
local observation.

Aggregate Statistics: We assume that agents belong to a
small number of types, and there are many more agents than



Figure 1: Discretization in Cooperative navigation. (a)
shows continuous grid in which agents try to move close
to landmarks. (b) shows state space discretization using two
3x3 tiles (in blue).

types. The key idea is to exploit the aggregate or collec-
tive nature of interactions among agents in several practical
applications. Several previous works in multiagent decision
making, such as anonymous and collective Dec-POMDPs,
mean field RL (Varakantham, Adulyasak, and Jaillet 2014;
Sonu, Chen, and Doshi 2015; Robbel et al. 2016; Subra-
manian et al. 2020; Nguyen, Kumar, and Lau 2017a, 2018;
Yang et al. 2018; Subramanian and Mahajan 2019) also ex-
ploit this property for scalability. We assume that the agent
type is also a component of the state. Since all agents share
the same local state space S and action space A, there can
be scenario where multiple agents are in same local state
s ∈ S and also taking same action a ∈ A. We introduce
count variables which keep tracks of this aggregate infor-
mation. Let 〈st,at〉 = 〈smt , amt 〉m=1:M be the joint discrete
state-action pair for all agents at time t, where smt and amt
are the random variables representing discrete state, action
of agent m at time t.

• Let nt(s) =
∑M
m=1 I[smt = s; st], ∀s ∈ S, denote the

state count variable that counts the number of agents in the
same discrete state s at time t (I is the indicator function).

• Let nt(s, a) =
∑M
m=1 I[smt = s, amt = a; st,at], ∀s ∈

S,∀a ∈ A, denote the state-action count variable that
counts number of agents in same discrete state s and tak-
ing same action a at time t.

We denote nSt = 〈nt(s)〉∀s and nSAt = 〈nt(s, a)〉∀s,∀a
as the state and state-action count tables respectively, and
nt = 〈nSt ,nSAt 〉 be the count table vector at time t.

Addressing continuous state space: It appears that the
count-based aggregate statistic would not generalize when
the underlying state space is continuous. Indeed, several
MARL benchmarks do have continuous state space, such as
multiagent particle environments (Lowe et al. 2017). Mo-
tivated by the use of tile coding for state aggregation in
RL (Sutton and Barto 2018) and discretization of the state
space in MDPs (Chow and Tsitsiklis 1991), we assume a
mapping φ(sm) : S → U which maps the local state sm
into a discrete space um ∈ U . The mapping φ can be con-
sidered as a discretization mechanism, similar to tile-coding
or grid based discretization. Although, discretization may re-
quire domain knowledge, but in many application domains,

it can be fairly straightforward. For example, in air traffic
control domain (Tumer and Agogino 2007) air space is dis-
cretized into sectors, in road traffic control (Wiering 2000),
roads are divided into discrete cells, and in the multiagent
particle environments (Lowe et al. 2017) such as coopera-
tive navigation, we can use tile-coding to discretize the state
space as shown in figure 1. Thus, the credit assignment tech-
niques we develop are also applicable to continuous state
spaces, and validated empirically on such problems.

3 Reward Model for Discrete Actions
In this section, we first show how to learn a function approx-
imator for the system reward based only on reward signals
from the simulator and by exploiting the aggregate nature
of interaction among agents. We then develop techniques to
analytically compute shaped difference rewards from such a
reward approximator.

3.1 Learning System Reward Model
Before we can compute difference rewards, it is crucial
to first learn an accurate approximator for the system re-
ward. We address both the non-decomposable reward set-
ting where there is a single global reward given to the entire
agent team, and the decomposable reward setting when the
global reward is decomposable among agents.

Non-decomposable rewards: In this setting, the simulator
provides single numerical reward r to the agent team. We
maintain a buffer B where each recorded sample ξ involves
the tuple 〈rξ,nSAξ 〉. The nSAξ is the state-action count ta-
ble given the joint state-action was 〈s,a〉 (defined in sec-
tion 2), and reward signal rξ was provided by the simulator
as a result of the joint action a taken in the joint state s.
Given the homogeneous agent population, the reward func-
tion does not depend on the identities of the agent, as also
noted in previous models (Yang et al. 2018; Nguyen, Kumar,
and Lau 2017a). Therefore, we learn a function approxima-
tor rw(nSA) that takes as input the state-action count table.
The loss function can be defined as:

L(w) =
∑
ξ∈B

(
rξ − rw

(
nSAξ

))2

(4)

We can minimize the above loss using standard auto-
differentiation libraries.

We also comment on the scalability of learning rw. The
size of input to rw is |S| × |A| (each input can be a normal-
ized count value in [0, 1]). Crucially, input vector’s dimen-
sions do not depend on the number of agents. Therefore, it
is scalable to learn such a function approximator even for
large agent settings. In several practical applications such
as air traffic control, discrete states correspond to zones in
the airspace (Brittain and Wei 2019), similarly, for maritime
traffic, each discrete state corresponds to a navigable zone
in the port area (Singh, Kumar, and Lau 2020). In such set-
tings, number of zones are limited by the physical dimen-
sions of the region in which agents move, and therefore, the
input size |S| × |A| remains tractable. These are the settings
where our approach would be more impactful.



Decomposable rewards: In many application domains, the
global reward is decomposable. E.g., in the air traffic do-
main, if two aircrafts are closer than a threshold distance,
then penalty is given to each aircraft (Brittain and Wei 2019).
For such settings, we assume the global reward is decom-
posed into local reward received by each agent which de-
pends on agent’s local state and action, as well as the aggre-
gate statistic of the agent population. Since agents are ho-
mogeneous, we can aggregate the reward over all the agents
in a particular state-action (s, a) as:

r
(
nSAt

)
=
∑
s∈S

∑
a∈A

nt(s, a) · r̃(s, a,nSt ) (5)

where r̃ is the reward given to an agent. Corresponding to the
reward structure in (5), the reward function approximator rw
can also be structured in a decomposable way:

rw
(
nSAt

)
=
∑
s∈S

∑
a∈A

nt(s, a) · r̃w(s, a,nSt ) (6)

The loss function for training r̃w is given as:

L(w)=
∑
ξ∈B

[∑
s∈S

∑
a∈A

nξ(s, a)
(
r̃ξ(s, a,n

S
ξ )−r̃w(s, a,nSξ )

)]2

(7)

Empirically, when we used the loss function in (7), the per-
formance was not good, and it required several samples to
train r̃w. We then investigated another surrogate loss func-
tion that is an upper bound on (7) using the Cauchy-Schwarz
inequality (details omitted).

L̃(w)=M
∑
ξ∈B

∑
s∈S,a∈A

nξ(s, a)

(
r̃ξ(s, a,n

S
ξ )−r̃w(s, a,nSξ )

)2

(8)

This loss function provided much better results. Intu-
itively, the reason is that in (7), some r̃w can overestimate
or underestimate the corresponding target r̃ξ. When we do
summation over all the states and actions, the loss may still
appear small as different overestimates and underestimates
may cancel out. However, this issue does not happen in the
loss (8) as the loss term (r̃ξ(·) − r̃w(·))2 is always positive,
and is magnified by the count nξ(s, a).

3.2 Computing Difference Rewards
We now show how to compute difference rewards (DRs)
from rw in a model-free setting without requiring any ex-
tra simulations or domain expertise. Unlike previous ap-
proaches (Proper and Tumer 2013), our methods is not tied
to a domain, and also explicitly utilizes aggregate informa-
tion over all the agents, in contrast to methods that use only
local information available to an agent (Colby et al. 2016).
As a result, our method results in much better solution qual-
ity when combined with a policy optimization technique
than such previous approaches.

Let smt and amt be the state and action of an agent m at
time t. From the definition of difference rewards(Agogino
and Tumer 2008; Colby et al. 2016),

Dm (smt , a
m
t ) = r(st,at)− r(s−mt ∪ ds,a−mt ∪ da) (9)

where, s−mt = st \ smt and a−mt = at \ amt are joint state
and action without agent m. Let ds and da denote default

state and action for agent m. Intuitively, the difference pro-
vides the contribution (or credit) of the agent to the total
reward. DRs are also aligned with the overall objective of
a cooperative multiagent system. Therefore, if agents learn
to optimize their DRs, it will also optimize the long term
global reward as the second term in (9) always uses fixed
state-action for an agent i. DRs provide a conceptual frame-
work for credit assignment, and do not provide a concrete
algorithm to compute them. In large multiagent systems, it
is often intractable to exactly compute such shaped rewards.
We therefore present several new techniques that can accu-
rately estimate DRs from the learned reward model in large
mutiagent systems.

For our homogeneous agent setting, using the state-action
count table, nSAt , derived from the joint state-action pair
(st,at), we can rewrite (9) as:

Dm(smt , a
m
t ) = r

(
nSAt

)
−r
(
n
SA−(smt ,a

m
t )+(ds,da)

t

)
(10)

where, nSA−(s
m
t ,a

m
t )+(ds,da)

t is like a counterfactual state-
action count table obtained by replacing the current state and
action (smt , a

m
t ) of agent m with a default state and action

(ds, da). There can be many agents in the same state taking
same action, and thus sharing the same DR value. There-
fore, instead of computing DR for each agent individually,
we can define DR for each state-action pair. This way of
defining DRs is going to scale much better with the increas-
ing number of agents. Let (s ∈ S, a ∈ A) be any arbitrary
state-action pair. Let Isa and Idsda be an identity matrix
with the same dimension as nSAt with all zero entries except
value 1 at the index corresponding to (s, a) and (ds, da) re-
spectively. The difference rewards for state-action pair (s, a)
is also given as:

Dt(s, a) = r
(
nSAt

)
− r

(
nSAt − Isa + Idsda

)
(11)

Recall that we do not have access to the actual reward
function r(nSAt ) in a model free setting. Therefore, we re-
place r(nSAt ) with the learned reward function rw from
section 3.1. For stable training of rw, we also normalize
the count variables with the total agent population, ñSAt =
nSAt /M . With reward function approximator, (11) becomes:

Dt(s, a) ≈ rw
(
nSAt
M

)
− rw

(
nSAt − Isa + Idsda

M

)
(12)

Direct evaluation of above expression is computationally
expensive as the argument matrix in the second term is dif-
ferent for different state-action pairs, and needs to be com-
puted at each time step as nSAt keeps changing. Further-
more, as action-value function used to train the policy is
learned from such DRs in our approach, the scale of policy
gradients can be adversely affected by rw, specially during
early training when rw is inaccurate. This can lead to con-
vergence to a poor quality solution. To address these issues,
we develop a gradient based method that can analytically ap-
proximate DRs faster in a vectorized form using optimized
autodiff libraries, and also uses only the gradients of rw.
Empirically, we observed that our new method resulted in
better quality than computing DRs using (12). As our fo-
cus is on settings with large agent population, we assume



M →∞. Under this assumption, the expression for approx-
imate difference rewards (12) becomes:

Dt(s, a)≈ lim
M→∞

[
rw

(
nSAt
M

)
− rw

(
nSAt − Isa + Idsda

M

)]
= lim

∆=1/M→0

[
rw
(
ñSAt

)
− rw

(
ñSAt −∆ ·

(
Isa − Idsda

))]
= −1 · lim

∆→0

[
rw
(
ñSAt −∆ ·

(
Isa − Idsda

))
− rw

(
ñSAt

)]
= −1 · (−∆)

(
∂rw

(
ñSAt

)
∂ñSAt (s, a)

−
∂rw

(
ñSAt

)
∂ñSAt (ds, da)

)
(13)

Dt(s, a) ≈ 1

M
·

(
∂rw

(
ñSAt

)
∂ñSAt (s, a)

−
∂rw

(
ñSAt

)
∂ñSAt (ds, da)

)
(14)

where (13) was derived from the previous expression by
using total differential. Total differential states that if x is
a small vector, then f(a + x) − f(a) ≈

∑n
i=1

∂f
∂xi

xi. In
our case, ∆

(
Isa − Idsda

)
is analogous to x as ∆ is a small

number, and entries in different I vectors are either 0 or 1.
Once difference rewards are computed, it is possible to

integrate them in a policy gradient algorithm (details in the
supplement 1). The resulting approach computes returns Rt
using the learned difference rewards (rather than empirical
rewards from the simulator). This results in a model-based
RL where difference rewards provide a counterfactual value
highlighting an agent’s contribution to the team’s reward.
Furthermore, learning of the reward model and policy can
be done simultaneously. As the learning proceeds, the re-
ward model becomes more accurate, which in turn leads the
convergence to a good solution quality.

4 Reward Model for Continuous Actions
We next show how a system reward model with continuous
actions can be learned using aggregate variables. Then, us-
ing the learned reward model, we derive an expression for
difference rewards, and show how DRs can be adapted to
the soft actor-critic (SAC) algorithm (Haarnoja et al. 2018)
for our setting. In several problems, the underlying contin-
uous action space is often discretized. E.g., in the air traffic
domain (Brittain and Wei 2019), the speed of the aircraft is
discretized. Empirically we show that different levels of dis-
cretization can result in significant differences in the solution
quality. Training a policy on the true underlying continuous
action space helps alleviate such domain engineering issues.

4.1 Learning Reward Model
Let π(am|sm; θ) denote the stochastic policy of agentm pa-
rameterized by θ. The policy π can be a Gaussian with mean
and variance as output of a neural network parameterized by
θ. A popular approach to address continuous actions is us-
ing the reparameterization trick, e.g. in the SAC algorithm,
action am in state smt is computed as (Haarnoja et al. 2018):

am = fθ(ε
m; sm) (15)

where fθ(•) is a deterministic function, εm is an input noise
sampled from some fixed distribution. Let ε = 〈εm, m =

1https://jamesarambam.github.io/files/icaps21-sup.pdf

1:M〉 be input noise vector, a = 〈am = fθ(ε
m; sm),∀m =

1 : M〉 be the joint action. As the joint action determinis-
tically depends on ε, parameters θ, and state s, we use an
alternate notation rθ(s, ε) for the joint reward r(s,a). This
interpretation would be useful later.
Partitioning the noise space: Extending count table based
techniques presented in the previous section is non-trivial for
continuous actions as no two agents will take the same action
under a stochastic policy. We also do not wish to discretize
the action space to avoid domain engineering overhead. The
solution to using count based methods for continuous ac-
tions lies in partitioning the space of noise ε. The noise ε
comes from a fixed known distribution (such as a Gaussian),
and it does not require domain knowledge to partition the
noise space. Although for theoretical reasons, the partition-
ing must be as fine as possible, we show empirically that
solution quality was fairly robust to different levels of noise
space discretization.

We divide the noise space into K partitions P =
{1, . . . ,K}. Partition index k ∈ P denotes the range
[εk−1, εk]. For simplicity, we assume the width of each parti-
tion is the same ∆=εk−εk−1. We denote εk? as the midpoint
of the range [εk−1, εk].
Linear approximation of the reward: Let us assume that
εm, the input noise of agent m, falls in partition k (or εm ∈
[εk−1, εk]). For a given joint noise vector ε, let k ∈ PM
denote the joint partition index vector for all the agents. We
use k(m) to indicate the specific partition index for agent m
under k. We use εk? = 〈εk(m)

? , m = 1 : M〉 to denote the
midpoint of partitions indexed by each agent’s noise value.

Using the above notations, we can express εm = ε
k(m)
? +

δ
k(m)
m where δk(m)

m is the small adjustment made to the mid-
point εk(m)

? to match εm. Using first order Taylor approxi-
mation of the system reward at εk? , we have:

rθ(s, ε) ≈ rθ(s, εk? ) + (ε− εk? ) · ∇εrθ(s, εk? )

= rθ(s, ε
k
? ) + δ · ∇εrθ(s, εk? ) (16)

If the width ∆ of noise partitions is small, then δ (or the
vector of adjustments δk(m)

m ) would also be small. Under this
setting, we can ignore the second term, and approximate the
reward as:

rθ(s, ε) ≈ rθ(s, εk? ) (17)

The state-noise vector (s, ε) does not result in meaning-
ful count tables as ε is continuous. However, given the rela-
tionship in (17), we can design a parameterized reward ap-
proximator based on the symmetries (e.g., different types
of count information) present in (s, εk? ). In rθ(s, ε

k
? ), we

use the midpoint value of noise partitions instead of the
actual noise. Therefore, many agents may have noise val-
ues which fall in the same partition, which gives rise to
the count information as noted next. We define count ta-
bles (nSt ,n

SP
t ) where the state count table nSt = 〈nt(s)〉∀s

counts the number of agents in same state at time t given
the joint state st (same as for the discrete action case). Let
nSPt = 〈nt(s, k),∀s ∈ S,∀k ∈ K〉 be the state-noise count
table resulting from the joint state-noise vector (st, εt):



nt(s, k) =

M∑
m=1

I [smt = s, idx(εmt ) = k; st, εt] (18)

where idx(εmt ) maps the noise for agent m, εmt , to its corre-
sponding noise partition index.
Structure of reward approximator: Based on count tables
(nSt ,n

SP
t ), we use a parameterized function rw

(
nSt ,n

SP
t

)
which approximates the system reward. Intuitively, the re-
ward signal rξ given the joint state-noise (st, εt) is ap-
proximated using rw

(
nSt ,n

SP
t

)
, where count tables re-

sult from (st, εt). The parameters w of the reward ap-
proximator are trained by minimizing the loss: L(w) =∑
ξ∈B

(
rξ − rw

(
nSt ,n

SP
t

))2, as in the discrete action case.

4.2 Computing Difference Rewards
Recall that, action amt = fθ(ε

m
t ; smt ) is a deterministic func-

tion of noise εmt , θ and state smt . We can rewrite the defini-
tion of DR (9) for continuous action settings as:

Dm (smt , ε
m
t ) = rθ(st, εt)− rθ(s−mt ∪ ds, ε−mt ∪ dε)

where dε and ds are default noise and default state respec-
tively. In our setting, analytical form of the reward model
is not available. Therefore, we use the reward model rw to
rewrite the DR expression Dm(smt , ε

m
t ) as:

rw
(
nSt ,n

SP
t

)
− rw

(
n
S−smt +ds
t ,n

SP−(smt ,k)+(ds,dk? )
t

)
(19)

where k and dk? are the partition indices of noise εmt and
default noise dε respectively. As agents with the same state
and noise partition will have same DR value, we can com-
pute it for each state and noise partition pair (i ∈ S, k ∈ P):

Dt(i, k) ≈ rw
(
nSt ,n

SP
t

)
− rw

(
(nSt − Ii + Ids),

(nSPt − Iik + Idsdk? )
)

(20)

Ii, Ids , Iik and Idsdk? have similar definition to the dis-
crete action case as defined in paragraph above (11).

As our setting is for large agent population, as the agent
population M becomes large, we can show similar to the
proof of (14) (shown in supplement):

Dt(i, k) ≈ 1

M

(
∂rw

(
nSt ,n

SP
t

)
∂nSt (i)

−
∂rw

(
nSt ,n

SP
t

)
∂nSt (ds)

+

∂rw
(
nSt ,n

SP
t

)
∂nSPt (i, k)

−
∂rw

(
nSt ,n

SP
t

)
∂nSPt (ds, dk?)

)
(21)

4.3 SAC with DRs for Multiagent Setting
We adapt the SAC approach, which trains a policy for op-
timizing continuous actions using the re-parameterization
trick (15) and entropy bonus for better exploration. The SAC
uses empirical rewards to train action-value function ap-
proximator. This is where a key difference in our adaptation

lies—we use the DR value Dt computed above to learn the
action-value function, which is then used for policy training.
Training with DR signals gives better solution quality as it
is a much cleaner signal than the empirical reward, which
has high noise due to actions of multiple agents. This also
shows the strength of shaped rewards we have computed as
they can be easily integrated in a variety of RL algorithms.

Let Qη (om(st), a
m
t ) and Vψ (om(st)) be parameterized

action-value and state-value functions respectively, where
om denote agent m’s observation (observation encodes the
count-based information agent receives), st is the joint
state. Since, the policy and value function approximators are
shared among agents (we can also have one policy, value
function per agent type), we aggregate the experiences col-
lected by each agent, and update different function approxi-
mators as shown below.
State-value function update: The parameters ψ of state-
value function are updated by minimizing:

LV (ψ) =

M∑
m=1

Est∼D
[1

2

(
Vψ
(
om(st)

)
−

Eamt ∼πθ
[
Qη (om(st), a

m
t )− log πθ(a

m
t |om(st))

])2 ]
where D is replay buffer where samples collected during

simulation rollouts are stored; πθ is the shared policy.
Action-value function update: The parameters η of action-
value function is updated by minimizing:

LQ(η) =

M∑
m=1

Est,a
m
t ∼D

[1

2

(
Qη
(
om(st), a

m
t

)
−

Q̂
(
om(st), a

m
t

))2] (22)

Updating action-value is where our model-based approach
differs from the standard SAC. The target for Q function pre-
diction, Q̂, is computed as:

Q̂(om(st), a
m
t ) = Dt(o

m(st), k
m) + γEst+1

[
Vψ̄(om(st+1))

]
Crucially, here we use the difference reward value instead

of the empirical reward. This signal provides better credit as-
signment than learning directly from empirical rewards. We
use km to denote the partition index of the noise parameter
εmt corresponding to the action amt .
Policy function update: The policy gradient update is the
same as in the original SAC except that we also aggregate
gradients over all the agents, similar to action-value and
value function updates noted earlier.

5 Experiments
We evaluate our proposed approach on both synthetic and
real world instances of air-traffic control problem, and in a
continuous state cooperative navigation problem.
Air traffic control (ATC): We follow similar settings used
in (Brittain and Wei 2019) where only aircraft speed is con-
trolled, not the altitude. We use following baselines. Two
domain specific approaches—AT-BASELINE (Brittain and
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Wei 2019) and AT-DR (Proper and Tumer 2013). LOCAL-
DR (Colby et al. 2016) is another DR based baseline. We
also compare against MCAC (Nguyen, Kumar, and Lau
2018) and MTMF (multitype mean field RL) (Subramanian
et al. 2020), which are designed specifically for homogenous
agent population. AT-DR is a DR based approach developed
specifically for ATC. In our adaptation of AT-DR we used
our reward approximation model because we did not have
access to their customized simulator and for DR computa-
tion we use the expression in (11). Detailed experimental
setting are in supplement. We omit results of training with
global rewards as the learning curve was flat, implying the
signal was too noisy.
Synthetic instance experiments setup: We follow the
same experimental setup and cost function used in (Brittain
and Wei 2019). We use BlueSky Air Traffic Control Simula-
tor (Hoekstra and Ellerbroek 2016) to enable realistic simu-
lation of aircraft movements.
Robustness to noise partitions for continuous action: We
first checked sensitivity of our continuous action DR (DR-
Cont ) on different noise partitions P . Fig 2b shows the re-
sults. We evaluate on a high and low traffic intensity set-
tings (rate=0.1, 0.5 respectively) with 30 sectors map and 50
agents. Traffic rate is explained later. We observe that our ap-
proach is not very sensitive to number of partitions; for both
10 and 20 partitions, it achieved similar quality; 6 partitions
slightly worse. For low traffic (rate=0.5), the trend was sim-
ilar. We chose 10 partition setting for other experiments.
Comparison between discrete and continuous DR: Fig-
ure (2a) shows comparisons of our discrete action DR ap-
proach DIFF-RW with different action discretizations, our
continuous action based DR (DR-Cont ), and a continuous
version of MTMF . Our goal is to show that different lev-
els of discretizations can result in significant quality differ-
ences, and our continuous action approach avoids such engi-
neering issues. We use DIFF-RW with 3, 5 and 7 actions. We
use a large map with 30 sectors and 50 agents. We evaluate
it for high and low traffic intensity settings. In high traffic
setting, the quality varies with different levels of discretiza-
tion, this show sensitivity of discrete DR with number of
actions. The DR-Cont is able to achieve close to best quality
(Actions-5), and performs better than MTMF also. For next
discrete action experiments, we use 5 discretizations levels.
Accuracy of learned reward model: We also test the ac-
curacy of our learned reward model by measuring the train-
ing loss. We use a map with 30 sectors, arrival rate = 0.1

and 50 agents. In figure (3d) we show the loss curve for
reward model approximation. We include both of our ap-
proaches continuous (DR-Cont ) and discrete action (DIFF-
RW) versions, and previous reward approximation approach
LOCAL-DR . We observe both of our approaches are able
to minimize the loss effectively; LOCAL-DR is inaccurate
as local information is not sufficient to predict complex re-
wards. For AT-DR , we used the same reward approximation
model as ours, thus it has same value as our approach.

Figure (3a) shows result for experiments with 50 aircraft
agents, 20 sector map, and with varying arrival rate. We use
the same arrival rate setting in (Brittain and Wei 2019). At
each time step and for each trajectory, the next arrival time
of an aircraft is uniformly sampled from a set of intervals
arrintv = {20, 25, 30}. For example, a random sample of
20 for a trajectory means the next aircraft will arrive in t+20
time step. A value on the x-axis of figure (3a) denotes the
fraction of each arrival intervals in arrintv . For example, for
arrival rate = 0.3, the arrival interval set become arrintv =
{0.3 · 20, 0.3 · 25, 0.3 · 30}. We also round it to the nearest
integer values as arrintv = {6, 7, 9}. For arrival rate = 0.1,
we have arrintv = {2, 3}. The traffic becomes more intense
with lower arrival rate, and would lead to higher congestion
in an uncoordinated setting.

In figure (3a), we observe the expected trend of total qual-
ity improving with increasing arrival rate. We also observe
the performance gap of DIFF-RW with other approaches de-
crease with increasing arrival rate. At arrival rate = 0.1 set-
ting, due to high frequency of aircraft arrivals, most of the
baseline approaches suffer from high congestion. This set-
ting require tighter coordination among aircrafts, which is
better achieved by DIFF-RW. Other DR baselines, LOCAL-
DR suffers because in difficult instances DR value computa-
tion is noisy due to noisy reward model approximation. AT-
DR is able to perform well than other baselines but still sub-
optimal to our approach. We also show the result for arrival
rate = 0.7 setting to verify all approaches behave similarly at
slightly easier problem instances.

Figure (3b) shows result for setting with 20 sector map,
fixed arrival rate = 0.1, and with varying aircraft popula-
tion. In this setting, we observe the empirical evidence of
DIFF-RW performing better with higher agent population.
At lower population setting, almost all approach perform
equally well. But for large population setting, other base-
lines suffer due to lack of efficient credit assignment.

We also tested with increasing number of sectors. Figure
(3c) shows results with fixed arrival rate = 0.1 and aircraft
population as 50. We observe that AT-BASELINE suffers
most among other approaches. This is because in difficult
instances, parameter sharing based method lacks coordina-
tion among agent without explicit credit assignment, even
though it is scalable. Similar to previous results, DIFF-RW
performed best for different map sizes.

We also performed experiments to compare the solution
quality of DIFF-RW with two different loss functions de-
scribed in section 3.1. The system reward in air traffic do-
main is decomposed among agents (Brittain and Wei 2019).
Old loss and new loss in figure (4c) denote DIFF-RW ap-
proach with the loss functions in (7) and (8) respectively (20
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Agents, 15 sectors, 0.1 arrival rate). The y-axis denotes the
performance metric. We observe that DIFF-RW with new
loss is able to achieve better quality than with old loss. We
observed similar results on several other settings. Therefore,
for all previous experiments we used our new loss function
in (8).
Real data experiments: We evaluate our approach on air
space surrounding one of the busiest airport Heathrow, Lon-
don. The data for 30 days is obtained from a commercial
company over the European airspace. We use 20 days data
for training and 10 days for testing. More details on exper-
imental setup is provided in supplement. We train and test
our approach only for the peak hour period formed between
6th-10th hour. The plot for traffic intensity of aircrafts is pro-
vided in supplement.
Training: For each training day, we extract the initial infor-
mation of simulation such as speed and lat-lon of aircrafts at
1st second of 6th Hour from data. We also extract the future
arrival information of aircrafts such as arrival time points
between the 6th-10th hour period, speed when aircrafts en-
ters the planning region and their lat-lon information. During
training, at the start of each RL episode, we randomly select
a day from the pool of 20 training days. Then we use the
initial and future arrival information of that day to simulate
and learn the policy.
Testing: We evaluate our learned policy on 10 separate
testing days. For each day, we extract the initial and future
arrival information for simulation. Then the trained policy
is evaluated on each of the remaining 10 days separately.
Figure (4a) shows result of our approach compared against
baselines (MCAC was slightly worse than MTMF , to avoid
clutter, its bars are omitted). We observe in most of the days
all approaches perform equal or better than DATA (which
is the replay of the historical dataset). DIFF-RW is able to
achieve much better solution quality than other baselines.
Cooperative navigation domain: We also evaluate our ap-
proach on cooperative multiagent navigation (Lowe et al.
2017). The state space in this environment is continu-

ous, therefore we use tile coding based technique for dis-
cretization. For this domain we use following baselines—
MADDPG (Lowe et al. 2017), MAAC (Iqbal and Sha 2019),
(LOCAL-DR ) (Colby et al. 2016) and mean field multia-
gent RL (MF) (Yang et al. 2018) (MTMF was not applicable
as all agents were of same type). The MCAC did not per-
form well as unlike the air traffic domain where the underly-
ing network of sectors helped design a good critic structure,
there is no such structure in this domain.

Figure (4b) shows results with varying agent population;
y-axis denotes mean episode reward. For small agent pop-
ulation n = 3, MADDPG and MAAC perform better than
MF , LOCAL-DR and DIFF-RW . This is because our ap-
proximation of DR for small number of agents may not be
accurate. However, with increasing agent population, solu-
tion quality of MADDPG , MAAC and LOCAL-DR drops,
and DIFF-RW and MF improves. This trend is an empirical
evidence of the accuracy of our DR method with increasing
agent population. For 20 agent setting, even though DIFF-
RW and MF have similar solution quality, our approach is
able to converge faster than MF . At 1000 episodes, MF
has quality of around -6.3 where as DIFF-RW converged to
around -5.2 value (higher is better). MF eventually converge
to -5.2, but at around 3000 episodes. Learning curve plot
provided in supplement.

6 Conclusion
We presented a new approach to estimate difference rewards
for effective multiagent credit assignment in large multia-
gent systems. We exploited the property that in many practi-
cal applications, agents are homogeneous (or belong to a few
types). Unlike previous techniques for difference rewards,
our method does not require domain expertise or extra sim-
ulations, and is highly scalable with the number of agents.
On a range of synthetic and real world instances, we showed
significantly improved performance of our approach against
several other competing MARL algorithms.
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