
Supplemental Materials to Submission: 
Hierarchical Multiagent Reinforcement Learning 

for Maritime Traffic Management 
1. Synthetic Data Experimental Setup:  

1.1   Synthetic Graph Generation 

For generating synthetic graph, we create series of bipartite like graph. First
we select number of columns i.e the vertical line where blue dots(nodes) are
shown is considered as a column. Once we select number of columns then
we choose maximum number of nodes to be present in 1 column. Then for
each column we randomly choose number of nodes between [1, max-nodes-per-
column]. Then from each node in each column we make full connection with all
others nodes of next column. In the above example number of columns = 9 and
max-nodes-per-column = 3.

The settings of all instances are as follows. We use a graph with 30 edges, 6
source zones and 1 terminal zone as shown in figure 1, tra�c enters from left and
end at right side, the tra�c from four last zones ends at one common terminal
zone. For figure 4(c) experiment, we use di↵erent maps where we vary number
of edges. Each vessel’s arrival time at the starting edge is uniformly sampled
from [1, 20], each vessel consumes one unit of resource when traversing an edge,
tzz

0

min

and tzz
0

max

are set to [1, 30], for all experiments delay penalty wd = 1 and
horizon = 100. For each setting, we generate 10 instances and average values
are reported. All of our experiments are performed on Intel(R) Xeon(R) Gold
6154, 72-Core processor, 3.0 GHz.



	
  
1.1  Implementation Details:  

	
  

	
   	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

For all three approaches IMVF-PG, Vessel-PG, Meta-PG we use same neural

network architecture, but Vessel-PG di↵er only in output layer. IMVF-PG and

Meta-PG have two output heads one for each µ✓zz0 and ⇡⌫zz0 . Vessel-PG has

only one output head for the deterministic policy and structure is similar to

output head structure of ⇡⌫zz0 .We use a one big neural network with each zone

intersection hz, z0i as one sub-network which are segregated from one another.

Input to the big network is n

tot

t , then each zz

0
(sub-network) receives only the

count information of n

tot

t (z) and neighboring zone count n

tot

t (z

0
). For each

subnetwork, we use 2 hidden layers, each layer with hidden nodes = 4, then from

the last hidden layer we have two output heads one for each µ✓zz0 and ⇡⌫zz0 .

For µ✓zz0 we have output layer which gives probability distribution over meta

actions with dimension equals to number of meta actions. For ⇡⌫zz0 outputs

a vector h�zz0

! i8!. For each hidden layer, we use tanh activation and for the

output layer µ✓zz0 head we use softmax and for output head sigmoid activation

is used on each unit so that we get the value between [0, 1]. Layer-norm [1] is

applied before each hidden layer and output layer. We use Adam optimizer [2]

with learning rate 1e-3 and entropy penalty 1e-3 is used. All of our model are

implemented on pytorch [3].



	
  

 
2. Sampling Process : 

	
  

Here we describe our stochastic process for generating count
nt+1

= (narrt+1

, nnxtt+1

, nmta

t+1

, ñt+1

, ntxnt+1

) given nt.

narrt+1

(z0): This count represents total number of vessels that arrived at zone
z0 at time t+1. It is computed by sum of vessels that were in transit in previous
zone z at time t reached z0 at t+ 1 and newly arrived vessels in zone z at time
t reaching z0 at time t+ 1, note that, there may be many vessels reaching z0 at
t+ 1 traveling with varying behavior !.

narrt+1

(z0) =
X

z

"
ntxnt (z, z0, ⌧ =1)+

X

!

ñt(z, z
0,!, ⌧ =1)

#
8z0 (1)



	
  

	
  
	
  

	
  
	
  

	
  

	
  
	
  

	
  

	
  

n

mta

t+1

(z, z

0
, ·): Next we generate behavior count from n

nxt

t+1

(z, z

0
) i.e newly

arrived vessels at z moving to z

0
and choosing a behavior ! from policy ! ⇠

µ

zz0

✓ (!|o(z, ntott+1

)). We can generate the count from a multinomial distribution

with parameters n

nxt

t+1

(z, z

0
) and p! = µ

zz0

✓ (!|o(z, ntott+1

)), 8!

n

mta

t+1

(z, z

0
, ·)| nnxtt+1

(z, z

0
)⇠Mul(n

nxt

t+1

(z, z

0
), p!8!)

ñt+1

(z, z

0
,!, ·) : Now, we generate arrival time count from

n

mta

t+1

(z, z

0
,!). Since all newly arrived vessels at z moving to z

0
with behavior !

follow a travel time distribution p

nav

, we can generate the count from a multi-

nomial distribution with parameters n

mta

t+1

(z, z

0
,!) and p⌧ = p

nav

(⌧ |z, z0;�zz0

! =

⇡⌫zz
(o(z, n

tot

t+1

)))8⌧

ñt+1

(z, z0,!, ·) | nmta

t+1

(z, z0,!) ⇠ Mul(nmta

t+1

(z, z0,!), p⌧8⌧)

where, ⌧ = tzz
0

min

+ �̃, �̃ 2 [0, tzz
0

max

� tzz
0

min

]

With this generative model for count, we can compute the policy gradi-

ent by sampling at the count level n1:H instead of sampling individual vessel

trajectories.

Now, we compute transit count n

txn

t+1

(z, z0, ⌧), vessels at zone z moving to

next zone z0 that have not reached at time t+ 1 i.e ⌧ > 1

n

txn

t+1

(z, z0, ⌧) = n

txn

t (z, z0, ⌧) +
X

!

ñt(z, z
0,!, ⌧) 8z, z0, ⌧ > 1 (1)



3. Simulator Accuracy : 

 
	
  

	
   References  

[1]  Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer 
normalization. CoRR, abs/1607.06450, 2016.   

[2]  Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic 
optimization. CoRR, abs/1412.6980, 2014.   

[3]  Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, 
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca 
Antiga, and Adam Lerer. Automatic differentiation in pytorch. In 
NIPS-W, 2017.   


